
Feature Sensitive Surface Extraction from Volume Data

Leif P. Kobbelt Mario Botsch

Computer Graphics Group, RWTH-Aachen

Ulrich Schwanecke Hans-Peter Seidel

Computer Graphics Group, MPI Saarbrücken

Figure 1: We present a new technique to extract high quality triangle meshes from volume representations of geometric objects. The
two main contributions are an enhanced distance field representation and an extended Marching Cubes algorithm. The above figures
show reconstructions of the well-known “fandisk” dataset from its distance field representation. The distance field has been sampled
on a uniform 65×65×65 grid. The far left image shows the standard Marching Cubes reconstruction, center left is the reconstruction
by the same algorithm but applied to the enhanced distance field with the same resolution. Center right shows the result of our new
extended Marching Cubes algorithm applied to the original volume data, and finally on the far right we show the reconstruction by
our new algorithm applied to the enhanced distance field. The approximation error to the original polygonal model is below 0.25 %.

Abstract

The representation of geometric objects based on volumetric data
structures has advantages in many geometry processing applica-
tions that require, e.g., fast surface interrogation or boolean opera-
tions such as intersection and union. However, surface based algo-
rithms like shape optimization (fairing) or freeform modeling often
need a topological manifold representation where neighborhood in-
formation within the surface is explicitly available. Consequently,
it is necessary to find effective conversion algorithms to generate
explicit surface descriptions for the geometry which is implicitly
defined by a volumetric data set. Since volume data is usually sam-
pled on a regular grid with a given step width, we often observe
severe alias artifacts at sharp features on the extracted surfaces. In
this paper we present a new technique for surface extraction that
performs feature sensitive sampling and thus reduces these alias ef-
fects while keeping the simple algorithmic structure of the standard
Marching Cubes algorithm. We demonstrate the effectiveness of
the new technique with a number of application examples ranging
from CSG modeling and simulation to surface reconstruction and
remeshing of polygonal models.

1 Introduction

There are two major classes of surface representations in computer
graphics: parametric surfaces and implicit surfaces. A paramet-
ric surface is usually given by a function f that maps some 2-
dimensional (maybe non-planar) parameter domain Ω into 3-space
while an implicit surface typically comes as the zero-level iso-
surface of a 3-dimensional scalar field f (x,y,z) (volume represen-
tation). From an abstract point of view, parametric surfaces are
defined as the range of a function and implicit surfaces are defined
as the kernel of a function. Therefore, some operations are much
easier to perform on either representation.

For parametric surfaces, e.g., it is very easy to enumerate points
on the surface by evaluating the function f at different parameter
values in the domain Ω. Neighboring or ”geodesicly” nearby sam-
ples p1 = f(u1,v1) and p2 = f(u2,v2) can be identified by measuring
the differences of the corresponding parameter values (u1,v1) and
(u2,v2). However, given a point p in 3-space it is not that easy to
check if this point lies on the parametric surface or not. On the
other hand, checking if a given point p lies on an implicit surface is
trivial since we just have to evaluate f (p). However, enumerating
points on an implicit surface is not straightforward.

The choice of the best suited surface representation consequently
depends on the expected operation profile in a specific application.
Nevertheless, to obtain maximum flexibility, it is necessary to de-
velop algorithms for the conversion between both representations.
Conversion from parametric to implicit requires to compute the sur-
face’s distance field [25] while conversion from implicit to paramet-
ric is usually done by finding surface samples and connecting them
to a polygonal mesh [3, 39]. Higher order parametric representa-
tions such as NURBS are usually constructed in a second step by
surface fitting techniques [18].

In this paper we propose a new technique for the conversion from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

the volume representation of an object to the polygonal mesh rep-
resentation of its surface. The surface extraction algorithm is an
extension of the well-known Marching Cubes algorithm [21] with
an enhanced quality of the output mesh.

The major motivation for the development of the new technique
are the severe alias artifacts that can be observed at sharp features
of the converted surfaces. These artifacts are due to the fact that
Marching-Cubes-type algorithms process discrete volume data and
the sampling of the implicit surface f (x,y,z,) = 0 is performed on
the basis of a uniform spatial grid. Figure 1 shows the effect on a
CAD example. In a preprocess we converted the well-known ”fan-
disk” model into a volume representation by evaluating its distance
field on a uniform 65×65×65 grid. When converting the implicit
representation back to a polygonal mesh by using the standard MC
algorithm, the reconstruction near the sharp features is very bad
(far left image in Fig. 1). The size of these artifacts could be re-
duced by refinement of the underlying 3D grid but the basic alias
problem will not be solved since the surface normals of the recon-
structed mesh will not converge to the normal field of the original
3D model.

The central contributions of this paper are:
• We propose an enhanced representation of the discrete
distance field: Instead of using a scalar distance value
for each grid point of a uniform spatial grid, we store
directed distances in x, y, and z direction. This allows us
to find more accurate surface samples compared to the
approximate samples obtained by linear interpolation of
the grid values. As it turns out, the generation and han-
dling of directed distance fields is no more complicated
that the processing of scalar distance fields.
• We present an Extended Marching Cubes algorithm
that detects those grid cells through which a sharp fea-
ture (edge or corner) of the considered surface passes.
Based on the local distance field information and its gra-
dient, additional sample points lying on the feature are
computed and inserted into the mesh. Consequently we
obtain a noticeably improved approximation of the un-
derlying surface (cf. Fig. 1) with significantly reduced
alias and the guarantee that the surface normals of the
approximation quickly converge to the original surface’s
normals. The necessary gradient information can be
sampled from the original distance field or estimated
from a tri-linear interpolant.

The algorithmic structure of the extraction algorithm is identical
to the original Marching Cubes algorithm, i.e., every cell of the
discrete distance field is processed separately and a surface patch
is generated based on local criteria only. The collection of these
small pieces eventually yields a triangle mesh approximation of the
complete surface.

Both components can be used independently to improve the sur-
face extraction, i.e., standard Marching Cubes applied to the en-
hanced distance field representation as well as the extended March-
ing Cubes applied to standard distance fields both improve the qual-
ity of the resulting mesh to a certain degree. The best results are
obtained if both components are combined (cf. Fig. 1).

We will start with a brief overview of related work in the con-
text of polygonal surface extraction from volume data. In Section 3
we will then motivate and justify our alternative representation of
the distance field function which eliminates the approximation er-
ror that is introduced by sampling a piecewise tri-linear function
instead of the original distance field. In Section 4 we explain the
details of our extended Marching Cubes algorithm that generates
a feature sensitive triangle mesh approximation by taking the local
gradient of the distance field into account. Eventually, in Section 5
we will show a number of applications that demonstrate the effec-
tiveness of our algorithm. The examples include the generation of
high quality triangle mesh models for implicitly defined CSG ob-
jects, the simulation of milling processes, the surface reconstruction

from scattered point clouds and the remeshing of polygonal mesh
models. The variety of applications indicates the flexibility of the
algorithm.

2 Related work

The basic concept behind volume representations for geometric
models is that they characterize the whole space enclosing an ob-
ject. By this they are independent from the actual surface topology
and this is why volume representations are preferred in applications
where the topology of an object can be complicated or even changes
during an operation.

There are different conceptual frameworks for volume-based
(implicit) surface representations, among them are algebraic sur-
faces [4], radial basis functions [42] and voxelizations [5, 15, 22].
In any case, a surface S is represented as the zero-level iso-surface
of a scalar valued function f : IR3 → IR. To efficiently process vol-
ume representations, one generates a discrete approximation of the
continuous scalar field f by sampling the function on a sufficiently
fine spatial grid gi, j,k .

In the area of volume graphics [13, 15, 26, 34], techniques
have been investigated to use volume representations as a univer-
sal graphics primitive and to visualize and modify such representa-
tions directly without intermediate conversion. However, in many
geometric modeling and processing applications, explicit surface
representations are necessary to satisfy the geometric quality re-
quirements and to provide direct access to inherent surface prop-
erties such as the geodesic neighborhood relation and differential
geometric characteristics (e.g. curvatures). Consequently, much ef-
fort has been spend to develop efficient and flexible algorithms for
the extraction of explicit surface information from volume datasets.

Two subproblems have to be solved in this context: first, find a
dense set of surface samples and then connect them in a topologi-
cally consistent manner to obtain a sufficiently close approximation
of the original surface S. In general we distinguish between grid-
based techniques and grid-less techniques.

Figure 2: The adaptive octree refinement yields a set of finest-level
cells whose union completely contains the surface S. Any algorithm
applied to the volume representation of the surface can be restricted
to these cells.

Grid-less techniques start with some initial polygonal mesh ap-
proximation of the surface S that is iteratively improved by attract-

ing the mesh vertices to the surface S. The scalar field f serves as
a potential field to guide the movement of the vertices. Since this
attracting force acting on the mesh vertices can be combined with
a regularizing force which tends to improve the aspect ratio of the
triangles, grid-less techniques usually lead to high quality meshes if
the underlying surface S is smooth [23, 30, 40, 43]. However, in the
presence of sharp features in the surface, alias effects become vis-
ible which are partially due to the finite discretization of the scalar
field f but also due to the fact that mesh vertices are not explicitly
attracted to those features (and hence vertices hit the features only
statistically).

The grid-based techniques extract a piece of the surface S for
each cubic cell in the grid gi, j,k . Surface samples are computed by
(approximate) intersection of the cell edges with the surface and
a triangle mesh is generated that connects these samples. Most
grid-based techniques are conceptually derived from the Marching
Cubes algorithm [21] where a pre-processed triangulation is stored
in a table for all possible configurations of edge intersections. Many
variants of this basic algorithm have been published which resolve
ambiguities [32, 33] or suggest alternative ways to approximate the
surface samples [31].

Since the complexity of the uniform grid gi, j,k increases cubi-
cally, with decreasing step width h, one often adapts the sampling
density to the local geometric significance in the scalar field f . Hi-
erarchical sampling schemes like the octree technique start with
a very coarse root cell. This cell is adaptively refined to capture
more and more details of the function f and hence of the surface S
(cf. Fig. 2). The adaptive refinement of the octree data structure
allows the Marching Cubes algorithm to check on a rather coarse
discretization level if relevant parts of the geometry are contained
in the current cell or its descendants [20].

If the considered cell lies completely inside or completely out-
side the object then further refinement does not improve the ap-
proximation of the surface. This simple criterion yields a uniformly
refined ”crust” of finest-level cells around the surface S (cf. Fig. 2).

In [13, 37] the complexity of the adaptively refined octree is fur-
ther reduced by subdividing cells only in curved regions of the sur-
face. However, although this optimizes the sparsity of the octree
representation, it implies some difficulties since the piecewise tri-
linear interpolant of the grid data in the vicinity of the surface is
no longer continuous and hence several special cases have to be
handled.

Our new surface extraction algorithm is an extension of the stan-
dard Marching Cubes technique and hence grid-based. It applies an
adaptive refinement strategy which splits only those cells that con-
tain a piece of the surface S. By this we obtain a crust of finest level
cells around the surface and generate one or more surface patches
for each. Since we process every cell separately we can conceptu-
ally assume we have a uniform grid and the adaptive octree traver-
sal enumerates a part of its cells. This simplifies the explanations
in the following sections. Nevertheless, the presented techniques
should always be understood to be embedded in an adaptive octree
traversal scheme.

3 Distance field representation

For a given surface S ⊂ IR3 a volume representation consists of a
scalar valued function f : IR3 → IR such that

[x,y,z] ∈ S ⇐⇒ f (x,y,z) = 0.

If we assume that f is a continuous function then S is a surface
without boundary and can be considered as the outer surface of a
solid object.

Obviously, the function f is not uniquely defined for a given
surface S. One natural choice, however, is the signed distance field

function which assigns to every point [x,y,z] ∈ IR3 its distance

f (x,y,z) := dist([x,y,z],S)

with a positive sign for points outside the region enclosed by S and
a negative sign for points inside S.

Based on this representation many operations like point location
or boolean operations can be implemented quite efficiently, e.g.,

[x,y,z] ∈ S1 ∩S2 ⇔ max{ f1(x,y,z), f2(x,y,z)} = 0

[x,y,z] ∈ S1 ∪S2 ⇔ min{ f1(x,y,z), f2(x,y,z)} = 0

[x,y,z] ∈ S1 \S2 ⇔ max{ f1(x,y,z),− f2(x,y,z)} = 0

which is the reason why distance field representations are very pop-
ular in solid modeling applications.

The standard way to store the distance field f for a surface S in
an efficient data structure is to sample f on a uniform spatial grid
gi, j,k = [ih, j h,k h]. The sampled distances

di, j,k = f (ih, j h,k h)

can be interpolated on each grid cell

Ci, j,k(h) = [ih,(i+1)h]× [j h,(j +1)h]× [k h,(k +1)h]

by a tri-linear function such that we obtain a piecewise tri-linear ap-
proximation f ∗ to the original distance field f and a corresponding
surface S∗ defined by f ∗(x,y,z) = 0 which approximates S.

The Marching Cubes algorithm generates a triangle mesh ap-
proximation of S∗ from f ∗ by exploiting the fact that the piece-
wise tri-linear function is actually linear along each edge of a cell
Ci, j,k(h). Hence, sample points on the surface S∗ can be found
quite easily by linear interpolation of the distance values di, j,k at
two neighboring grid points gi, j,k .

The major limitation of this simple technique is that the samples
on S∗ are not necessarily close to S in the vicinity of sharp features.
Figure 3 shows an extreme example in two dimensions, i.e., contour
extraction from a two dimensional distance field. Here the distance
field interpolation fails because both grid points find their minimum
distance in different directions. This directional information is not
captured by the scalar valued distance samples and hence the in-
terpolant f ∗ is an insufficient approximation of the true distance
field f . Figure 5 shows this effect in a three dimensional example.

Figure 3: Consider two neighboring grid points (green) in the vicin-
ity of a sharp feature (corner) of the contour S (red). Sampling the
scalar valued distance function f at both grid points (blue) and esti-
mating the sample point by linear interpolation leads to a bad esti-
mation (black) of the true intersection point between the red contour
and the green cell edge.

To improve the approximation ‖ f − f ∗‖ one could refine the dis-
cretization grid h → h′ < h or switch to higher order polynomial
interpolants within each cell Ci, j,k(h). However, in the first case the
improved accuracy of the samples comes with a refined triangula-
tion and hence a larger number of triangles in the output mesh and
in the second case the local computations are getting more compli-
cated which affects the overall simplicity of the algorithm.

Therefore we suggest a third alternative to avoid these difficulties
by using a different discretization of the distance field f which we
call the directed distance field. For this data structure we exploit the
fact that the Marching Cubes algorithm computes surface samples
only on the cell edges. Consequently, it is not necessary to generate
a continuous function f ∗ which approximates f in the interior of
the cells.

For the directed distance field, we store at each grid point gi, j,k
three directed distances in (positive) x, y, and z direction instead of
the scalar valued distances di, j,k , i.e.,

di, j,k =

[

distx
disty
distz

]

Negative distance values again indicate that the grid point lies inside
the object while positive distances point outside.

The processing of directed distance fields is identical to the pro-
cessing of scalar distance fields. The min/max computations for
the boolean operations have to be applied componentwise to the di-
rected distances, e.g., the directed distance field for S = S1 ∩ S2 is
obtained by

di, j,k =

[

max{dist1,x,dist2,x}
max{dist1,y,dist2,y}
max{dist1,z,dist2,z}

]

.

The Marching Cubes algorithm can be applied to the directed dis-
tance field data structure without significant modifications. The lo-
cal configuration can still be derived from the sign pattern at the
cell’s corners since the three directed distances at one grid point
always have the same sign (inside/outside status).

The intersection point, e.g., for the cell edge between gi, j,k and
gi+1, j,k is computed by

s = (1−|di, j,k[x]|/h) gi, j,k + (|di, j,k[x]|/h) gi+1, j,k

and is valid if di, j,k[x] and di+1, j,k[x] have opposite signs.
Although storing the directed distances di, j,k increases the mem-

ory consumption by a factor of three, we have the advantage that
sample points lying exactly on the surface S are available for the
Marching Cubes algorithm (cf. Fig. 4). As demonstrated in Fig-
ure 5, this improves the quality of the extracted surface significantly
in the vicinity of sharp features.

Figure 4: If we store directed distances (blue) in x and y direction at
every grid point (green), we can compute exact intersection points
of the contour with the cell’s edges.

3.1 Generation of directed distance fields

It appears computationally more involved to evaluate the directed
distances compared to the scalar distances. However, for most types
of input data it turns out that directed distances are relatively easy
to compute. In fact, the average computational effort is lower than
for scalar valued distance computations (where we have to search
in all directions) and also lower than for general ray tracing (where

intersections can happen everywhere along the ray). We will focus
on computational methods for the distance field evaluation although
recently, graphics hardware accelerated techniques have been sug-
gested [11].

Two different approaches are possible. One is to compute the
intersections for each cell edge separately. Here we can exploit
the locality of the interrogation since each edge has only a small
length h. Notice that for all discrete volume representations, dis-
tances with an absolute value larger than h are irrelevant since they
are not used for sample point computations during the Marching
Cubes algorithm.

The second approach is to combine collinear cell edges, e.g., to
concatenate the grid points g0, j,k, . . . ,gn, j,k into one axis aligned ray
g(λ) = g0, j,k + λ [1,0,0] and then compute all intersections along
this ray. The intersection points are then used to store the directed
distances at the corresponding grid points gi, j,k .

Implicit surfaces For a geometric object defined by an implicit
function f we find the directed distances for a grid point by a uni-
variate root finding scheme [24] which becomes particularly simple
since we only search along the x, y, or z axis, e.g., for the edge be-
tween the grid points gi, j,k and gi+1, j,k , we have to solve

f̃ (t) = f (ih+ t, j h,k h) = 0, t ∈ [0,1].

For a reasonably small grid size h we can find a sufficiently good
starting value for t and Newton iterations will quickly converge to
the exact solution. Notice that closest point search for an implicit
surface is much more complicated than ray intersection [4].

Polygonal meshes If our geometric object is given by a polyg-
onal mesh, the directed distance computation can use all the ac-
celeration techniques that have been developed for fast ray-tracing
algorithms [2]. In our implementation we use a binary space parti-
tion tree [35] to quickly find the triangles which are candidates for
an intersection. For each grid point gi, j,k we identify the triangles in
a h+ ε sphere and then compute intersections with the axis aligned
rays in positive x, y, and z directions.

Since we know that our inquiry points gi, j,k lie on a uniform
spatial grid we can exploit this regular structure to optimize the
BSP-tree. In fact, using the octree space partitioning implied by the
grid cells Ci, j,k(h) themselves seems to be the optimum.

Point clouds Volume representations for point clouds are an ef-
fective tool which is used in many surface reconstruction algorithms
[7, 17]. To define a signed distance to the point cloud, each point
has to be equipped with a properly oriented normal vector [1, 17].

Together with its normal each point defines a tangent plane ele-
ment and the signed distance from a query point gi, j,k to the cloud
is defined as the signed distance to the tangent plane of the nearest
neighbor.

Computing directed distances requires the intersection of rays
with the point cloud. In our implementation we used a variation of
the technique proposed in [9, 36].

4 Extended Marching Cubes

Even if we are able to compute exact surface samples with the di-
rected distance field data structure, the major problem with any dis-
cretization of a distance field f remains. This is the occurrence of
alias effects at sharp features of the underlying surface S. In prin-
ciple, we could reduce the approximation error of the surface S∗

extracted from the discretized field f ∗ by excessively refining the
grid cells in the vicinity of the feature. However, the normals of
the extracted surface S∗ will never converge to the normals of S
(cf. Fig. 6).

Figure 5: The center and right surfaces are generated by the Marching Cubes algorithm applied to the uniformly sampled distance field of the
object on the left. In the center, scalar distance values are stored for each grid point while on the right three directed distances are stored to
enable exact surface sampling. This reduces the alias errors to a small region around the feature.

Figure 6: Alias errors in surfaces generated by the Marching Cubes
algorithm are due to the fixed sampling grid. By decreasing the grid
size, the effect becomes less and less visible due to the convergence
of S∗ to S but the problem is not really solved since the normal
vectors of S∗ do not converge to the normals of S.

The reason for this behavior is the fact that the standard March-
ing Cubes algorithm computes surface samples on a globally uni-
form grid that cannot be aligned to the features of the object. Lo-
cally adapting the sampling grid to the features of an object is criti-
cal since we do not want to lose the advantageous properties of the
basic algorithm like simplicity and efficiency.

Using higher order approximants to the local surface patch in-
stead of piecewise linear meshes does not improve the situation
since the sharp feature of an object’s surface S are exactly the loca-
tions where the surface is not a differentiable manifold.

However, what we can do is to use additional local information
from the distance field f and to extrapolate the behavior of the sur-
face near the feature. Figure 7 depicts the technique in two dimen-
sions. Instead of directly connecting the intersection points of the
contour with the cell edges, we additionally use the contour normal
to compute a linear local approximation (tangent element) for each
intersection point. Then intersecting the two tangents yields an ad-
ditional sampling point close to the sharp feature. If we include this
additional sample into our piecewise linear contour approximation
we obtain a much better reconstruction. A similar technique for
2-dimensional contour curve reconstruction has been proposed in
[38]. While their method is based on higher order polynomial in-
terpolants to several consecutive sample points, we use higher order
data from one single sample.

This effect did not happen by chance. As we stated earlier, the
surface/contour near a sharp feature is not a differentiable manifold.
However, for reasonable geometric models, we can at least assume
that the surface is piecewise differentiable. Hence, using point and
normal information to generate tangent elements yields good ap-
proximations on both sides of the feature and the intersection of
these approximations gives a good estimate of the actual feature
position.

From approximation theory we know that a piecewise linear in-

Figure 7: By using point and normal information on both sides of
the sharp feature one can find a good estimate for the feature point
at the intersection of the tangent elements.

terpolant to a smooth surface converges with the order O(h2) where
h measures the sampling density. In our case h is the size of the grid
cell. If we uniformly refine the grid h → h/2 we can expect the ap-
proximation error the be reduced to 1/4. However, in those cells
with sharp features the surface is not differentiable and hence the
approximation order drops down to O(h) which means the error
decreases much slower (in fact proportional to the grid size).

Using the tangent element approximation, however, increases the
local convergence rate in those feature cells since the (quadratic
order) approximation is done on both sides of the feature separately.
Of course for this argument to be valid we have to assume that there
is only one sharp feature within each cell but, again, this will be the
case for reasonable models and sufficient grid refinement.

In our extended Marching Cubes algorithm we generalize this
univariate feature point extrapolation technique to surfaces. How-
ever, the situation is more complicated since different types of fea-
tures have to be handled in a different manner. These types are
feature edges where two smooth surface regions meet along a sharp
feature line and corners where more than two smooth components
meet or, equivalently, where more than two feature edges intersect.

Just like the standard Marching Cubes, the extended algorithm
processes each cell Ci, j,k(h) separately. For each cell we first have
to check if a feature is present and if yes, which type of feature
(cf. Fig. 8). This classification of the cells is similar to the classi-
fication of cells in the extended octree data structure [6] where the
leaves of an octree for a CSG model are tagged as face cells, edge
cells, and vertex cells respectively.

If the cell does not contain a sharp feature, we generate a local
triangle mesh patch by using the standard Marching Cubes table.
However, if a feature is present, we use the gradient information at
the edge intersection points to define local tangent elements. Based
on these planes we compute one new sample point close to the ex-
pected feature. Instead of using the standard triangulation we gen-
erate a triangle fan with the new vertex as its center.

By this modification of the Marching Cubes algorithm we still

Figure 8: When inserting additional feature samples in some cells
during the extended Marching Cubes we distinguish between dif-
ferent types of feature configurations: edge features are shown in
green and corner features in red.

use the global uniform sampling grid to compute points on the sur-
face S but we include additional sample points in those cells where
we expect sharp features. Hence we combine the advantages of reg-
ular data structures with the flexibility of adaptive sampling. Notice
that for typical CAD models the feature sampling will happen only
in very few cells along the feature lines.

Figure 9: The feature sensitive sampling in the extended March-
ing Cubes algorithm works in three steps. First, the cells/patches
that contain a feature are identified (left). Then one new sample
is included per cell (center) and finally one round of edge flipping
reconstructs the feature edges.

Figure 9 shows the different stages of the algorithm. Since the
feature samples are inserted into the mesh as the center of a triangle
fan without considering neighboring cells, the triangle connectiv-
ity of the resulting mesh does not reflect the presence of features.
Hence, we have to apply a postprocessing step to the mesh where
some of the mesh edges are flipped. The flipping criterion is quite
simple: each edge is flipped if it will connect two feature samples
after the flip. The edge flipping does not produce any undesired
side effects since the restriction to one feature sample per cell guar-
antees their sufficient separation. After the flipping, the edges con-
necting feature samples provide an explicit representation of the
feature lines as polygons within the triangle mesh. In Figure 10 we
show the results of the extended Marching Cubes algorithm for the
same dataset that has been used in Figure 5.

After this general description of the algorithm, the remaining
technical questions are, how to do the feature classification and how
to compute the feature sample point. There are different ways to
implement this functionality. The solutions that we present here are
designed to not contain any unintuitive parameter and to find the
optimal position for the feature sample.

4.1 Surface normals

Feature detection and sampling both need additional information
about the surface S. In addition to the position of the sample points,

their normal vectors are required to construct the local tangent el-
ements. We have shown in the last section how an alternative dis-
cretization of the continuous distance field f yields exact point sam-
ples. For the surface normal information we have to exactly evalu-
ate the gradient of the distance field as well.

Since the gradient information is only needed at the sample lo-
cations, we can evaluate the gradients in advance during the dis-
cretization of the distance field. In our implementation we store the
gradients in the same data structure.

Implicit surfaces If an analytic function f is known for the sur-
face S then the gradient can be evaluated exactly at any location.
For this we have to compute the derivatives with respect to all three
coordinates symbolically. If the function f or its derivatives are too
complicated then numerical estimates based on divided differences
yield sufficiently good estimates.

Polygonal meshes During the evaluation of the (directed) dis-
tance to a polygon mesh we find the closest point on the surface as
a by-product. The normalized vector pointing from the query point
to that closest point is the normalized gradient of the distance field.

For our extended Marching Cubes algorithm we have to evaluate
the gradient of the distance function only for sample points lying
exactly on the surface S. Hence, we can simply use the normal
vector of that triangle on which the sample point lies.

Point clouds When computing the distance to a point cloud or
when intersecting a ray with it, we replace the scattered points by
tangent elements which can be considered as small facets making
up a polygonal surface. Hence the situation is quite similar to the
distance field computations for polygonal meshes: We find the gra-
dients for the surface samples by taking the normal vector associ-
ated with the nearest scattered point.

Scalar distance fields In some applications it might happen
that we get a discretized scalar valued distance field out of some
pre-process such that we cannot access the original continuous dis-
tance function f . In this case we have to estimate the gradients from
the scalar distance values at the grid points.

There are two possibilities: the first is to compute the gradient
of the tri-linear interpolant, the second is to estimate the gradient
in each grid point by divided differences using neighboring grid
points. These grid point gradients can then be interpolated within
each cell.

It is not obvious which method is superior to the other. The
second technique guarantees a continuous gradient field (which the
first method does not) but due to the larger support of the divided
difference operator we can observe a blurring effect on the gradient
field which makes the detection of sharp features more difficult.

4.2 Feature detection

Let s0, . . . ,sn be surface samples obtained by intersecting the edges
of an octree cell Ci, j,k(h) with the surface S defined by f (x,y,z) = 0.
If the constellation of the edge/surface intersection indicates (ac-
cording to the standard Marching Cubes table) the occurrence of
more than one connected component then we assume that the si are
a subset of the edge intersection that belong to the same component.
The selection of the si is done based on the Marching Cubes table.
In cells with several unconnected components we apply the edge
detection and feature sampling for each component separately.

Let ni be the unit surfaces normals of S at si, i.e., the normalized
gradients of f . Our goal is to detect if the surface patch of S corre-
sponding to the samples si contains a sharp feature. One simple but

Figure 10: The original object on the left is converted into a volume representation with the same resolution as in Fig. 5. In the center and on
the right we applied the extended Marching Cubes algorithm with feature sensitive sampling. The necessary gradient information is estimated
from the discrete scalar distance field in the center and evaluated from the original distance field on the right. The result of the combination
of the directed distance field with the extended Marching Cubes algorithm is indistinguishable from the original.

quite effective heuristic to do this is to compute the opening angle
of the normal cone spanned by the ni. If

θ := mini, j (nT
i n j)

is smaller than some threshold θsharp then we expect the surface
to have a sharp feature. Let n0 and n1 be the two normals which
enclose the largest angle and n∗ = n0 ×n1 be the normal vector to
the plane spanned by n0 and n1.

Next, we have to determine if the detected feature is a sharp edge
or if it is a corner point. For this we estimate the maximum devia-
tion of the normals ni from the plane spanned by n0 and n1, i.e., we
compute

ϕ := maxi |nT
i n∗|

and test if it is greater than some threshold ϕcorner. These simple
criteria proved to be quite effective in all applications reported in
Section 5. The two parameters θsharp and ϕcorner are very intuitive
since they can be considered as threshold angles that measure the
sharpness of a feature. The threshold θsharp can be chosen quite big,
say θsharp = 0.9, if the gradient data is not too noisy. For stability
reasons in the subsequent calculations, however, it is advisable to
choose the corner threshold ϕcorner big enough, say ϕcorner = 0.7,
to reduce the number of erroneous classifications. This is necessary
to distinguish between sharp corners and curved feature lines. In
all our experiments, the feature detection worked robustly without
being too sensitive to the particular choice of the threshold parame-
ters. Artifacts can only occur if edge features are wrongly classified
as corners (cf. next section).

4.3 Feature sampling

Once we have the classification of the current cell Ci, j,k(h) as a
feature line (θ < θsharp,ϕ ≤ ϕcorner) or as a corner configuration
(θ < θsharp,ϕ > ϕcorner) we try to find a sample point as close as
possible to the feature. As explained above we generate a tangent
element for each sample si with its normal ni and place the fea-
ture sample at the intersection of all tangent elements, i.e., the new
sample p solves the linear system

[. . . ,ni, . . .]
T p = [. . . ,nT

i si, . . .]. (1)

In general this system is overdetermined since we usually have
more than three edge intersections in each cell Ci, j,k(h). However,
at feature edges it can also happen that this system is underdeter-
mined since at a perfect feature edge, the tangent elements [si,ni]
are all sampled from two different planes and hence the matrix of
normal vectors has only rank two.

To avoid the handling of special cases, we therefore solve the
system (1) with the pseudo-inverse based on the singular value de-
composition of N = [. . . ,ni, . . .]

T [16]. If the feature is classified
as corner then this is a very stable way to compute the optimal fea-
ture sample point in the least squares sense, i.e. we find the point
p where the average (squared) deviation from all tangent elements
takes on its minimum.

If the feature is classified as an edge we expect one of the sin-
gular values to vanish since the (straight) feature line lies in both
tangent planes. However on real data this will almost never happen
since the gradient samples might be affected by arithmetic noise,
the surfaces near the feature might be curved, or the feature line
might be curved itself. Since the angle criteria used for the classi-
fication decided for a feature edge configuration, we therefore set
the smallest singular value of N explicitly to zero thus enforcing the
proper structure of the (now) rank deficient system (1). By this we
suppress the influence of those normal vectors which strongly devi-
ate from the plane spanned by n0 and n1 and stabilize the solution
of (1). Mis-classifying an edge feature as a corner and consequently
not setting the smallest singular value to zero, can lead to bad esti-
mates for p.

The pseudo-inverse of the modified matrix Ñ will lead to the
least norm solution of the underdetermined system, i.e. we find that
point p on the feature line which is closest to the origin. In order
to guarantee that this point lies in a reasonable configuration to the
samples si we apply a coordinate transform to the samples before
setting up the system (1) such that their center of gravity lies in the
origin.

Remarks We described the feature sampling procedure as a two
step process. First the feature is classified by the opening angles
of the normal cone. Then the tangent plane intersection in solved
based on the singular value decomposition of the normal matrix N.
It is tempting to try to read off the feature classification of the local
configuration directly from the magnitude of the singular values.
However it turns out that this is a very unreliable criterion since the
singular values not only depend on the angles between the normals
but also on their distribution.

If a feature edge passes through a cell Ci, j,k(h) we can have up
to seven intersection points belonging to the same surface compo-
nent for which we want to compute one additional feature sam-
ple. A priori we do not have any information about how many
of those samples lie on either side of the feature. This makes
the singular value classification quite unreliable since the matrix
[n0,n0,n0,n0,n0,n1] has a very different singular value distribu-
tion than the matrix [n0,n0,n0,n1,n1,n1].

5 Applications

In order to demonstrate the effectiveness of our new surface ex-
traction scheme we will point out different applications. In princi-
ple, the extended Marching Cubes can always replace the original
Marching Cubes algorithm since it has the same algorithmic struc-
ture and processes the same type of input data. If the distance field
gradients cannot be evaluated at the sample points, they can be es-
timated from the tri-linear interpolant (cf. Sect. 4.1).

Obviously the standard Marching Cubes scheme will always out-
perform our extended version since we have to do more involved
computations for every cell. However, the feature sampling has to
be done only in those cells where a feature configuration has been
detected from the normal cone and their number will increase only
linearly with the refinement while the total number of cells that con-
tain a piece of the surface grows quadratically. Moreover, we ob-
served that the necessary refinement levels for a given accuracy is
often lower with the extended Marching Cubes algorithm because
the feature sampling reduces the approximation error significantly.

The following table shows the relevant parameters for the
models depicted in this section. The execution times include only
the running times for the standard and extended Marching Cubes,
respectively. The (directed) distance fields and gradients have been
generated in a pre-process. The triangle count is always higher
for the extended Marching Cubes since we always chose the same
refinement level for both algorithms – although the approximation
error turned out to be much lower for the extended Marching Cubes.

standard MC extended MC

secs kTris secs kTris

CSG (Fig. 11) 4.03 105 5.48 117

Fan Disk (Fig. 1) 0.67 19 1.40 21

Max Planck (Fig. 14) 2.77 74 3.31 79

CAD (Fig. 15) 1.69 48 2.4 54

Figure 11: This figure shows a CSG example where the hollow
letters are subtracted from a cube-shaped base object. Directed dis-
tances and surface normals are derived directly from the volume
representation of the individual parts. The right image shows the
pieces that are generated in the interior of the cube by the three
cuts.

5.1 CSG modeling

The classical application area for volume representations is the de-
sign of solid objects by boolean operations. Every operation can be
performed by simple comparison of the distance values at the grid
points. This also holds for the directed distance field representation.

In our implementation we use the extended Marching Cubes for
the mesh generation from a CSG model. Feature sensitive sampling
is very important in this context since the sharp edges and corners
indicate intersections of basic objects and carry significant design
information (cf. Fig. 11).

A very important practical application of this technique is the
simulation of milling processes. A milling tool is traced along a
path and its envelope surface has to be generated. This application
is very demanding for the solid modeling tool since the envelope
surface usually intersects itself many times. The sharp ridges that
are characteristic for surfaces generated by a milling machine carry
crucial information because they are used to rate the quality of the
NC program (cf. Fig. 12).

Figure 12: Here we show the result of a milling simulation. The
volume representation of the milling tool’s envelope has been gen-
erated with boolean “join” operations applied to instances of the
milling tool at different time steps. Since the path of the milling
tool is piecewise linear, the envelope can be constructed from cylin-
ders and spheres. The upper image shows the surface extracted by
the standard MC algorithm, the lower image shows the extended
MC surface. The sharp ridges are better visible due to the clearly
reduced alias.

5.2 Surface reconstruction

One well-established technique to reconstruct a polygonal mesh
model from an unstructured cloud of points is to estimate a signed
distance function and then apply the Marching Cubes algorithm
[7, 17]. As we showed in Section 3.1 it is also possible to com-
pute directed distances and gradient information from point clouds
if normal vectors are available for the scattered points. We show an
example surface reconstructed from a dataset with 200K points in
Fig. 13.

Since scattered point datasets often come from a 3D scanning
device, they are usually disturbed by noise which affects the quality
of the resulting 3D models. Many optimization techniques have
been proposed to improve the smoothness of polygonal models by
applying local filter operations [8, 27, 41].

For meshes that we generated with the extended Marching Cubes
algorithm, we not only have the pure geometric information but
we additionally have some mesh vertices tagged as feature points
and some edges (connecting two feature points) classified as sharp

Figure 13: Triangle mesh reconstruction from a 3D scan of a bust.
The original dataset consists of 200 K scattered points. On the left
we show the result by the standard MC and on the right the extended
marching cubes. The right model is less blurred and shows much
more details around the mouth.

feature edges. We can exploit this information to further improve
the surface quality in the smoothing step by applying a univariate
smoothing scheme to the feature lines and a bivariate smoothing
scheme to the non-feature areas. If we disallow tangent information
to propagate across feature lines we can even enhance the sharpness
of the features. Figure 14 shows an example.

Figure 14: The left image show the result of the extended MC ap-
plied to a point cloud. If we low pass filter the mesh by taking the
feature information into account we obtain the result on the right.
All sharp features are well preserved while in the non-feature areas,
noise is effectively removed.

5.3 Remeshing

Polygonal meshes that are generated at some intermediate stage of
an industrial CAD process often have a bad quality. Degenerate tri-
angles and topological inconsistencies make it difficult to use such
models in any downstream application. To make this data accessi-
ble to other applications than mere display, we have to convert the
models into enhanced tesselations of the same geometry that guar-
antee, e.g., bounds on the aspect ratio of the triangular faces. This
resampling procedure is usually called remeshing [10, 29].

We converted a CAD model into a volume representation by
sampling its distance field on a uniform grid. Applying the ex-
tended Marching Cubes algorithm to this volume gives a remeshed
version of the original with a uniform vertex distribution.

One apparent drawback of Marching Cubes techniques in gen-
eral is the uniform sampling density which does not take the local

Figure 15: Remeshing of a polygonal mesh. The upper mesh has
been generated from a CAD model and has a very bad distribution
of triangles. We sampled the distance field for the model on a [129]3

grid and reconstructed the surface by the standard MC algorithm
(second image). The actual resolution of the volume representation
can be see from the sizes of the artifacts in the reconstructed sur-
face. In the third image we show our extended MC result. All sharp
features are reconstructed correctly (θsharp = 0.9). The lower im-
age shows the result of a feature line preserving mesh decimation
algorithm (error tolerance 1%).

surface curvature into account. Many approaches have been pro-
posed to control the mesh complexity by adaptive octree descent
with sophisticated refinement criteria [20, 37].

Similar to the feature sensitive smoothing we can exploit the fea-
ture information in the extended Marching Cubes output to control
the behavior of a mesh decimation post-process. In our implemen-
tation we use a mesh decimation scheme that is based on edge col-
lapsing [14, 19, 28]. Feature vertices are not allowed to change
their position during an edge collapse unless the collapsed edge is
a feature edge. By this we obtain effectively decimated meshes that
preserve most of the relevant feature information (cf. Fig. 15).

6 Conclusions and future directions

We presented a new mesh generation technique which converts a
distance field representation of a geometric model into a polygo-
nal mesh representation. Based on the Marching Cubes paradigm
we derived an extended algorithm that is able to reliably detect and
classify sharp feature regions on the surface and to accurately sam-
ple these features in order to reduce alias artifacts.

For the standard Marching Cubes there are generalizations that
can be applied to adaptively refined balanced octrees [20, 37]. The
problem here is to fix the gaps that appear in areas where cells from
different refinement levels meet. We are planning to modify the
extended Marching Cubes such that balanced octrees can be pro-
cessed as well. Currently, we do use adaptively refined octrees but
our refinement criterion always guarantees that the “crust” contain-
ing the actual surface is refined down to the finest level.

Finally, we did not optimize our extended Marching Cubes code
for computation speed. In principle there would be plenty of room
for improvements in various algorithmic steps of our current im-
plementation. However, we are aiming at a parallelization of the
algorithm. Crucial difficulties are not to be expected since the algo-
rithm processes each cell individually (like the standard Marching
Cubes) and hence parallelization should be straightforward.

References
[1] N. Amenta, M. Bern, M. Kamvysselis, A New Voronoi-Based Surface Recon-

struction Algorithm, Computer Graphics (SIGGRAPH 98 Proceedings), 1998,
415 – 422

[2] J. Arvo, D. Kirk, A Survey of Ray Tracing Acceleration Techniques, An Intro-
duction to Ray Tracing (A. Glassner, ed.), Academic Press, 1989, 201 – 262

[3] J. Bloomental, Polygonization of implicit surfaces, CAGD 5, 1988, 341 – 355

[4] J. Bloomental, C. Bajaj, J. Blinn, M. Cani-Gascuel, A. Rockwood, B. Wyvill, G.
Wyvill, Introduction to implicit surfaces, Morgan Kaufmann Publishers, 1997

[5] D. Breen, S.Mauch, R. Whitaker, 3D scan conversion of CSG models into dis-
tance volumes, IEEE Symposium on Volume Visualization, 1998, 7 – 14

[6] P. Brunet, I. Navazo, Solid representation and operation using extended octrees,
ACM Trans. on Graphics 9 (1990) 2, 170 – 197

[7] B. Curless, M. Levoy, A Volumetric Method for Building Complex Models from
Range Images, Computer Graphics (SIGGRAPH 96 Proceedings), 1996, 303 –
312

[8] M. Desbrun, M. Meyer, P. Schröder, A. H. Barr, Implicit Fairing of Irregular
Meshes Using Diffusion and Curvature Flow, Computer Graphics (SIGGRAPH
99 Proceedings), 1999, 317 – 324

[9] P. Dutre, P. Tole, D. Greenberg, Approximate visibility for illumination com-
putations using point clouds, Technical report PCG-00-1, Cornell University,
2000

[10] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle, Mul-
tiresolution Analysis of Arbitrary Meshes, Computer Graphics (SIGGRAPH 95
Proceedings), 1995, 173 – 182

[11] K. Hoff, T. Culver, J. Keyser, M. Lin, D, Manocha, Fast computation of gen-
eralized Voronoi diagrams using graphics hardware, Computer Graphics (SIG-
GRAPH 99 Proceedings, 1999, 277 – 286

[12] J. Foley, A. van Dam, S. Feiner, J. Hughes, Computer Graphics: Principles and
Practice, Addison–Wesley, 1992

[13] S. Frisken, R. Perry, A. Rockwood, T. Jones, Adaptively sampled distance
fields: a general representation of shape for computer graphics, Computer
Graphics (SIGGRAPH 00 Proceedings), 2000, 249 – 254

[14] M. Garland, P. S. Heckbert, Surface Simplification Using Quadric Error Met-
rics, Computer Graphics (SIGGRAPH 97 Proceedings), 1997, 209 – 218

[15] S. Gibson, Using Distance Maps for Accurate Surface Representation in Sam-
pled Volumes, IEEE Symposium on Volume Visualization, 1998, 23 – 30

[16] G. Golub, C. van Loan, Matrix Computations, 3rd, Johns Hopkins Univ Press,
1996

[17] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface Recon-
struction from Unorganized Points, Computer Graphics (SIGGRAPH 92 Pro-
ceedings), 1992, 71 – 78

[18] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J.
Schweitzer, W. Stuetzle, Piecewise smooth surface reconstruction, Computer
Graphics (SIGGRAPH 1994 Proceedings), 1994, 295 – 302

[19] H. Hoppe, Progressive Meshes, Computer Graphics (SIGGRAPH 96 Proceed-
ings), 1996, 99 – 108

[20] Y. Livnat, H. Shen, C. Johnson, A near optimal isosurface extraction algorithm
using span space, IEEE Trans. Visualization and Computer Graphics, 1996

[21] W. Lorensen, H. Cline, Marching Cubes: a high resolution 3D surface con-
struction algorithm, Computer Graphics (SIGGRAPH 87 Proceedings), 1987,
163 – 169

[22] J. Huang, R. Yagel,V. Filippov, Y. Kurzion, An Accurate Method for Voxelizing
Polygon Meshes, ACM 1998 Symposium on Volume Visualization, 1998, 119
– 126

[23] M. Kass, A.Witkin, D. Terzopoulus, Snakes: Active Contour Models, Interna-
tional Journal of Computer Vision, 1988, 321 – 331

[24] D. Kalra, A. Barr, Guaranteed ray intersections with implicit surfaces, Com-
puter Graphics (SIGGRAPH 89 Proceedings), 1989, 297 – 306

[25] A. Kaufman, Efficient Algorithms for 3D Scan–Conversion of Parametric
Curves, Surfaces, and Volumes, Computer Graphics, 21, 4, 1987, 171 – 179

[26] A. Kaufman, D. Cohen, R. Yagel, Volume Graphics, IEEE Computer, Vol. 26,
No. 7, July 1993, 51 – 64

[27] L. Kobbelt, S. Campagna, J. Vorsatz, H-P. Seidel, Interactive Multi-Resolution
Modeling on Arbitrary Meshes, Computer Graphics (SIGGRAPH ’98 Proceed-
ings), 1998, 105 – 114

[28] L. Kobbelt, S. Campagna, H-P. Seidel, A general framework for mesh decima-
tion, Graphics Interface ’98 Proceedings, 1998, 43 – 50

[29] A. Lee, W. Sweldens, P. Schröder, L. Cowsar, D. Dobkin, Multiresolution adap-
tive parameterization of surfaces, Computer Graphics (SIGGRAPH 98 Pro-
ceedings), 1998, 95 – 104

[30] C. Lürig, L. Kobbelt, T. Ertl, Deformable surfaces for feature based indirect vol-
ume rendering, Computer Graphics International, IEEE Proceedings, 1998,752
– 760

[31] C. Montani, R. Scateni, R. Scopigno, Discretized marching cubes, IEEE Visu-
alization Conference Proceedings, 1994, 281 – 287

[32] C. Montani, R. Scateni, R. Scopigno, A modified look-up table for implicit dis-
ambiguation of Marching Cubes, The Visual Computer (10), 1994, 353 – 355

[33] G. Nielson, B. Hamann, The asymptotic decider: resolving the ambiguity in
marching cubes, Visualization ’91, IEEE Computer Society Press, 1991, 83 –
91

[34] A. Rappoport, S. Spitz, Interactive boolean operations for conceptual design of
3D solids, Computer Graphics (SIGGRAPH 97 Proceedings), 1997, 269 – 278

[35] H. Samet, The Design and Analysis of Spatial Data Structures, Addison–
Wesley, 1989

[36] G. Schaufler, H. Wann Jensen, Ray tracing point sampled geometry, Eurograph-
ics Rendering Workshop Proceedings, 2000, 319 – 328

[37] R. Shekhar, E. Fayyad, R. Yagel, J. Cornhill, Octree-based Decimation of
Marching Cubes Surfaces, Visualization ’96, IEEE Conference Proceedings,
1996, 335 – 342

[38] K. Siddiqi, B. Kimia, C. Shu, Geometric Shock-Capturing ENO Schemes for
Subpixel Interpolation, Computation and Curve Evolution, Graphical models
and image processing (59), 1997, 278 – 301

[39] B. Stander, J. Hart, Guaranteeing the topology of an implicit surface polygo-
nization for interactive modeling, Computer Graphics (SIGGRAPH 97 Pro-
ceedings), 1997, 279 – 286

[40] D. Terzopoulus, Regularization of Inverse Visual Problems Involving Disconti-
nuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986

[41] G. Taubin, A Signal Processing Approach to Fair Surface Design, Computer
Graphics (SIGGRAPH 95 Proceedings), 1995, 351 – 358

[42] G. Turk, J. O’Brien, Shape transformation using variational implicit functions,
Computer Graphics (SIGGRAPH 99 Proceedings), 1999, 335 – 342

[43] Z. Wood, M. Desbrun, P. Schröder, D. Breen, Semi-Regular Mesh Extraction
from Volumes, Proceedings of Visualization 2000

